Tag Archives: Hox

A dual purpose RNA and Hox regulation

A new paper in Plos Genetics shows that a long non-coding RNA regulates the expression of a Hox gene in Drosophila in cis. This finding suggests an explanation for the co-linearity displayed by Hox genes between genomic arrangement and expression pattern.

The Ultrabithorax mutant.

Hox genes are master-regulators of positional identity along the anterior-posterior axis throughout bilaterian animals. Hox genes are found in genomic clusters in which their 3′-5′ organisation mirrors their expression pattern along the A-P axis. This correspondence between body axis and genomic organisation is termed co-linearity. An important feature of Hox gene genetics is the phenomenon of ‘posterior prevalence’. In any given segment the gene that has it’s most anterior boundary of expression in that segment will define segmental identity. Hence, if that gene is not expressed the segment will take on a more anterior identity. Perhaps the clearest example of this phenomenon is the Ultrabithorax mutant in Drosophila, in which segments that would have generated abdominal structures instead take on a thoracic fate, leading to flies with two sets of wings.

The Hox gene cluster is actually divided into two partial clusters in Drosophila; the Antennapedia complex (ANT-C) and the Bithorax complex (BX-C). BX-C consists of three Hox genes responsible for posterior patterning in Drosophila, Ultrabithorax (Ubx), abdominal-A (abd-A), and Abdominal-B (Abd-B) spread over ~300kb, and has become a paradigm for the understanding on genetic regulation. Many transcriptional enhancers, maintenance elements (sites for the binding of Polycomb-group and Trithorax-group chromatin modulating complexes), and encoded microRNAs responsible for regulating the expression of the BX-C genes have been discovered. However, a complete picture of BX-C regulation is still far away. It’s been known since the 1980’s that much of BX-C is transcribed, but the significance of this finding is just emerging. Gummalla et al. have used classical genetics to characterise the role of one such non-coding RNA in relation to the expression of abd-A in the embryonic CNS.

Figure showing the expression of ABD-A (red), and ABD-B (green) in the embryonic CNS. Note the gap in PS13, that isn’t filled by derepressed ABD-A in this mutant.

abd-A is expressed in the embryonic epidermis and CNS in parasegments (PS) 7-12 but is excluded from PS13. In line with ‘posterior prevalence’, this was considered to be due to Abd-B repressing abd-A expression. A mutation that removes Abd-B, shows expression of abd-A expression extending into PS13. However, this mutation also removed some of the sequence downstream of the transcription unit of Abd-B. In flies homozygous for more subtle mutations affecting Abd-B, abd-A expression only spreads into PS13 epidermis and not the CNS.  Therefore, some function located in the genomic region downstream of Abd-B (termed iab-8), was necessary for abd-A repression in the PS13 CNS. Gumalla et al. knew that a long non-coding RNA (iab-8 ncRNA) was predicted to initiate in this area, and therefore set out to characterise it’s function.

A map of the abdominal half of the bithorax complex. the iab-8 ncRNA is shown in blue (note exon structure). Abd-B, and abd-A are in black and the position of the miR-iab-8 is shown.

iab-8 ncRNA is transcribed from virtually the entire region between Abd-B and abd-A, spanning 92kb. Mutations that truncate iab-8 ncRNA near the Abd-B end cause a derepression of abd-A expression in the PS13 CNS, but mutations affecting the end nearest abd-A display only subtle derepression. The difference between these two classes of mutants, appears to be the position of a microRNA encoded by iab-8 ncRNA, miR-iab-8. This suggested that miR-iab-8 was responsible for the repression of abd-A in PS13 CNS. However, mutants with this miRNA deleted did not display the complete derepression phenotype, rather a very weak derepression of abd-A. This showed that there must be a second, partially redundant function of iab-8 ncRNA, apart from producing miR-iab-8.

To test whether a second miRNA or a small polypeptide encoded by iab-8 ncRNA was responsible for this second function, Gummalla et al. missexpressed iab-8 ncRNA from another locus in PS 8-13. This had no effect on ABD-A expression, suggesting that no other trans-acting factor is encoded by the ncRNA. They then performed some complicated genetic experiments that showed that iab-8 ncRNA acts to repress abd-A is cis. They generated flies that contained a deletion of miR-iab-8 on one chromosome, and a truncated copy of the iab-8 ncRNA on the other. These flies do not produce any of the miRNA, but still produce the ncRNA on one chromosome, and yet abd-A is derepressed in PS13 CNS. When flies are generated with one copy of the BX-C deleted, and a deletion of miR-iab-8 on the other chromosome, abd-A is not derepressed.

The iab-8 ncRNA therefore acts to repress abd-A expression in CNS of PS13 through two different mechanisms: a trans-acting miRNA, and through a cis-acting process of transcriptional interference. Although it is possible that this process of cis-repression could act by iab-8 ncRNA recruiting gene silencing machinery that would act by heterochromatin formation or DNA methylation, the authors suggest that it is more likely that iab-8 ncRNA acts by somehow interfering with the abd-A promoter. This leads them to suggest that if this method of gene regulation was widely used within Hox clusters it could explain the link between posterior prevalence and co-linearity. In this case expression of a more anterior gene is blocked in posterior segments by a more ‘posterior’ transcript. Similarly an upstream ncRNA acts to repress Ubx (Petruk et al.2006). This method of transcriptional interference by readthrough of more posterior genes or by upstream ncRNAs would fix the arrangement of Hox genes in an ancestral cluster, and hence the co-linearity that is observed today.

Gummalla, M., Maeda, R., Castro Alvarez, J., Gyurkovics, H., Singari, S., Edwards, K., Karch, F., & Bender, W. (2012). abd-A Regulation by the iab-8 Noncoding RNA PLoS Genetics, 8 (5) DOI: 10.1371/journal.pgen.1002720

Advertisements

A Ribosome Code?

The ribosome, a universally conserved molecular machine that catalyses protein synthesis, has generally been considered to act constitutively. That is to say, that ribosomes act to translate mRNAs in the same way across all cells and developmental stages. Regulatory control of translation is predominantly exerted by the action of translation initiation factors, which guide the association of the ribosome with target mRNAs. The eukaryotic ribosome is composed of 4 RNA molecules and 79 different ribosomal proteins (RPs). A paper published last year by Kondrashov et al. has shown one RP (RPL38) specifically regulates the expression of a subset of mRNAs during embryonic development in the mouse. Together with findings from human genetic diseases and from other organisms, this data is suggestive of a ‘ribosomal code’ regulating translation.

Kondrashov et al. set out to discover what gene was responsible for causing the morphological defects found in a spontaneous mouse mutant, tail-short (Ts). These mice display skeletal patterning defects, including homeotic transformations (ie. the conversion of a tissue’s identity to that of a different tissue; in this case changes between the segmental identities of vertebrae and ribs). They also display eye and craniofacial defects, short and kinky tails, and wavy neural tubes. These phenotypes are only found in heterozygous mice (Ts/+); homozygotes die at implantation stages. By positional cloning, Kondrashov et al. found that the gene responsible for Ts was Rpl38.

Ts/+ mice display skeletal defects and transformations along the entire length of the anterior-posterior body axis. The key regulators of morphological identity along the A-P axis are Hox genes. Hox genes encode homeodomain-containing transcription factors, and are found in four genomic clusters in vertebrates. Loss of function mutations in, or missexpression of, Hox genes generally leads to homeotic transformations (most shockingly seen in the Drosophila mutants antennapedia and ultrabithorax). Kondrashov et al. therefore examined the expression of Hox gene transcripts in Ts/+ mouse embryos. Surprisingly, they found no changes in the levels or expression domains of the Hox genes.

Schematic representation of the axial skeleton of WT and Ts/+ mice. Defects are explained by the effects of corresponding Hox gene mutants.

The researchers then asked whether changes in translational control of Hox genes were responsible for the Ts/+ phenotypes. Using various techniques they showed that there were no changes in global protein synthesis. However, by using quantitative PCR on mRNAs that were purified with active ribosomes, they identified a subset of Hox genes that were translationally deregulated in Ts/+ embryos (Hoxa4; a5; a9; a11; b3; b13; c8; d11).  These findings were confirmed by observing protein levels for HOXA5, A11, and B13 in the Ts/+ mouse embryos. The majority of the Ts/+ axial skeleton phenotypes could be accounting for by the known effects of loss of function mutations in the Hox genes that were translationally deregulated.

It therefore appears that RPL38 is exerting a specialised control on the translation of specific Hox genes. In further experiments Kondrashov et al. find that RPL38 is likely facilitating the formation of the 80S (complete) ribosomal complex on specific mRNAs (the ribosome is made up of two subunits, the 40S subunit associates with the 5’UTR of the target mRNA first and is then joined by the 60S subunit to make a translationally competent ribosome). An important question is whether RPL38 exerts it’s function as part of the ribosome, or whether it has extra-ribosomal roles as well? By separating ribosomal from ribosome-free cytosolic fractions, Kondrashov et al, found that RPL38 was only ever found in the ribosome.

Ribosomal proteins have generally been considered as ubiquitously expressed cellular ‘housekeeping’ proteins. However, when the researchers examined Rpl38 expression, they found that transcripts were enriched in specific tissues. For instance, embryonic tissues that give rise to facial structures, as well as the neural retina, showed high levels of Rpl38 expression, correlating with the craniofacial and eye defects in Ts/+ mice. Likewise, Rpl38 was strongly expressed in the somites and the neural tube, the embryonic tissues giving rise to the vertebrae and the spinal cord respectively. Kondrashov et al. went on to examine the expression of 72 different ribosomal proteins in 14 different tissue and cell types. They found a large amount of heterogeneity in RP expression, suggesting that many have specialised, tissue specific roles.

A few obvious outstanding questions for future studies should be noted; Does RPL38 bind cis-regulatory sequence or structure elements within target mRNAs? and what are they? Do trans-acting factors also play a role? Other developmental questions also stand out. Hox genes are not involved in eye development, and it also seems unlikely that the Hox genes implicated in the trunk segmental effects are also responsible for the craniofacial defects. What other RPL38 mRNA targets are responsible for these phenotypes?

These experiments have therefore shown that RPL38 has transcript-specific roles in the control of translation, and that many RPs display heterogeneous expression patterns rather than the previously assumed ubiquity. Together these findings suggest that RPs are imparting a new level of specificity in the control of gene expression. They fit into a broader array of observations that hint at the existence of a ‘ribosome code’ in which alterations in the composition of ribosomes leads to their translational specialisation towards subsets of mRNAs. Diamond-Blackfan Anaemia is a human genetic disease caused by mutations in a number of ribosomal proteins. Patients display limb defects, cleft palates, growth failures and cancer predisposition. Likewise knockdown of multiple distinct RPs in zebrafish leads to a wide range of developmental defects and a high incidence of cancer. A possible explanation for these types of finding, is that highly proliferating tissues may be more sensitive to differences in the rate of protein synthesis. Hence, indirect effects on cell proliferation and apoptosis may lead to the morphological abnormalities. However, Kondrashov et al. have shown in this study of Ts/+, overall protein synthesis is not affected, and the effects on a subset of developmental patterning genes are responsible for the bulk of the phenotypes.

Ribosomal RNAs and proteins are also targets for extensive chemical modifications such as phosphorylation and methylation, most of which are as yet uncharacterised. Interestingly, another human genetic disease, X-linked Dyskeratosis Congenita, is probably caused by failures of rRNA modifications. By analogy with the levels of complexity see with regard to modifications and combinations of chromatin-associated histones, a ‘ribosome code’ imparting translational specificity by heterogeneity of RPs and modifications has the potential to be a hugely important level of regulatory control.

Kondrashov, N., Pusic, A., Stumpf, C., Shimizu, K., Hsieh, A., Xue, S., Ishijima, J., Shiroishi, T., & Barna, M. (2011). Ribosome-Mediated Specificity in Hox mRNA Translation and Vertebrate Tissue Patterning Cell, 145 (3), 383-397 DOI: 10.1016/j.cell.2011.03.028

Topisirovic, I., & Sonenberg, N. (2011). Translational Control by the Eukaryotic Ribosome Cell, 145 (3), 333-334 DOI: 10.1016/j.cell.2011.04.006

Linking a lincRNA to active chromatin

Wang et al show that a lincRNA encoded at one end of the HOXA gene cluster acts as a transcriptional enhancer, necessary for the translation of high order chromosomal structure into a transcriptionally active chromatin state.

Hox genes encode transcription factors that determine positional identities along the anterior-posterior (a-p) body axis and along the proximal-distal (p-d) axes of appendages. In vertebrates, Hox genes are found in four clusters, in which their 3′-5′ genomic arrangement mirrors their a-p and p-d expression patterns. For instance, genes found at 3′ end of the HOXA cluster such as HOXA1 and HOXA2 are necessary for specifying positional identities in hindbrain, whilst genes found at the 5′ end of the cluster such as HOXA13 and HOXA11 determine distal elements of the limbs.

To investigate how this genomic colinearity is translated into differential p-d expression patterns, Wang et al analysed chromosomal conformation at the HOXA locus in different human fibroblast cells. In distally derived cells (foreskin or foot fibroblasts) the 5′ end of the HOXA cluster displayed a compact and looped conformation, whilst the 3′ end seemed largely linear. An opposite conformation was found in proximally derived cells (lung fibroblasts). These findings correlated with the presence of specific histone post-translational modifications (PTMs). Areas of high chromatin interactions showed high levels of trimethylated histone H3 lysine 4 (H3K4me3) (associated with transcriptionally active chromatin), and low levels of histone H3 lysine 27 trimethylation (H3K27me3) (associated with transcriptionally silent chromatin).

histone lysine methylation states across the HOXA cluster compared between distal and proximal cells.

A lincRNA named HOTTIP is encoded at the 5′ end of the HOXA locus. Analysis of it’s expression revealed that it is transcribed in posterior and distal territories, in a manner similar to nearby HOXA genes. When HOTTIP RNA was depleted (using small interfering RNAs) in distal cells, expression of 5′ HOXA genes was abrogated. HOXA genes nearest the HOTTIP gene were the most effected, however transcriptional activity over 40kb of the HOXA locus was lessened. HOTTIP RNA depletion did not effect the expression of other genes tested, such as the highly homologous HOXD genes.

HOTTIP RNA depleted distal cells did not show any changes to the higher order chromosomal conformation at the HOXA locus, however they did display a broad loss of H3K4me3 at the 5′ end of the cluster. This was not mirrored by a concomitant gain of H3K27me3. Therefore it appears the loss of 5′ HOXA gene expression upon HOTTIP RNA depletion is linked to the loss of H3K4me3.

Effects of HOTTIP RNA depletion on histone lysine methylation states.

H3K4 methylation and it’s maintenance are mediated by protein complexes composed of lysine methyltransferases such as MLL1 and associated proteins like WDR5. Analysis of MLL1 and WDR5 occupancy in the HOXA cluster of distal fibroblasts revealed occupancy peaks at the transcriptional start sites of the 5′ located genes. These occupancy peaks disappeared when HOTTIP RNA was knocked down.Wang et al go on to show that HOTTIP RNA physically interacts with WDR5 protein.

Effects of HOTTIP RNA depletion on occupancy of MLL1 and WRD5.

A number of lines of evidence suggest that HOTTIP RNA acts in cis to regulate 5′ HOXA genes. For instance, HOTTIP RNA is expressed at very low copy number, and depletion did not have any effect on the HOXD locus. Retroviral insertion driven overexpression of HOTTIP RNA did not ectopically activate HOXA genes, nor could it rescue depletion of the endogenous HOTTIP RNA.

Tying these results together yields a model in which chromosomal looping brings HOTTIP RNA (specifically bound to the HOTTIP gene) into contact with the 5′ HOXA genes. HOTTIP lincRNA binds and targets WDR5/MLL complexes to the 5′ HOXA locus, creating a domain of H3K4me3 and transcriptional activation.

lincRNAs are probably a heterogeneous class of molecules, as they are arbitrarily defined on the basis of length. These results however, suggest what could be quite a common mechanism for how lincRNAs implicated in enhancer function can effect gene activation and program chromatin states.

See also: lincRNAs in development and evolution

Wang, K., Yang, Y., Liu, B., Sanyal, A., Corces-Zimmerman, R., Chen, Y., Lajoie, B., Protacio, A., Flynn, R., Gupta, R., Wysocka, J., Lei, M., Dekker, J., Helms, J., & Chang, H. (2011). A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression Nature, 472 (7341), 120-124 DOI: 10.1038/nature09819