A chimeric fusion of RNA and DNA viruses.

The discovery of a new family of viruses leads to speculations on possible modes recombination between RNA and DNA viruses.

The virosphere can be divided into three major classes; viruses with DNA genomes, retroviruses that reverse-transcribe their RNA genome into DNA during their lifecycle, and RNA-only viruses that don’t require DNA intermediates to replicate. In fact, viruses use all sorts of different permutations of genetic material; double-stranded RNA, single-stranded RNA (either negative or positive strand), dsDNA and ssDNA. Viruses evolve notoriously quickly and lateral gene transfer between them is rampant. However, gene transfer has most commonly occurred between closely related viruses or between those with similar replication mechanisms. A recent paper has reported the discovery of a new family of viruses that appear to have arisen via lateral gene transfer between a (non-retroid) +ve single-stranded RNA virus and a ssDNA virus.

Diemer and Stedman discovered the new virus whilst investigating viral diversity in a geothermal lake in California. Boiling Springs Lake is an acidic, high temperature lake with a purely microbial ecosystem composed of archaea, bacteria, and some single cell eukaryotes. Using a metagenomics approach (ie. large-scale sequencing  of environmental DNA from a virus particle sized fraction), they discovered the strange juxtaposition of a capsid protein (CP) gene related to those from the ssRNA plant-infecting Tombusviridae, with a rolling-circle replicase (Rep) gene most similar to those from the circular ssDNA-containing Circoviridae. Using primers designed against CP they confirmed the genome sequence of this putative virus, finding that it consisted of a single-stranded circular DNA containing 4 ORFs. ORFs 3 and 4 are of unknown function and unrelated to known genes. The virus contains a stem loop structure upstream of the Rep gene similar to those that serve as replication origins in other Circoviruses. Thanks to the chimeric origin of the Rep and CP genes, the authors termed it RNA-DNA hybrid virus (RDHV). This term is slightly open to misinterpretation as it could suggest that both molecules are actually encoding its’ genome, but to be clear this is a circular ssDNA virus whose capsid protein is derived from ssRNA viruses.

Organisation of RDHV. Note that ORFs 3 and 4 are not equivalent to those of Tombusviruses, and RDHV is twice the size of other Circoviruses.

Scanning databases of environmental sequence, the researchers found three other instances of homologous CP and Rep sequences arranged in the same configuration, two from global ocean surveys and one from the Sargasso Sea. This shows that RDHV defines a new family of viruses that are common in marine environments and could be more widespread. As CP and Rep are still highly similar to their sibling genes, it appears that the LGT event underlying the evolution of this new family occurred quite recently.

How did recombination occur between a non-retrovirus ssRNA virus and a DNA virus? A number of genes derived from non-retroid RNA viruses have been found in eukaryotic genomes, so perhaps this type of exchange is not as strange or rare as it may seem. The most likely scenario involves the RNA gene being converted into DNA by reverse transcription, followed by DNA-DNA recombination. As reverse transcriptase is not encoded by either virus, it could have been supplied in trans by retrotransposons, group II introns, or retroviruses within a common host cell. This brings us to the problem of metagenomic studies; they have amazing power to identify novel viruses and organisms, but yield very little information on the biology of what is found. In this case of RDHV and it’s family we do not know what their hosts are, don’t know the morphology of the viruses, and don’t know about the functions of half it’s 4 gene genome. I’m not sure how quickly these questions will be answered. Nevertheless, this study shows that amazing diversity is still out there being found, and yields insight into mechanisms underlying virus evolution – possibly in the deep past as well as more recently.

Diemer, G., & Stedman, K. (2012). A novel virus genome discovered in an extreme environment suggests recombination between unrelated groups of RNA and DNA viruses Biology Direct, 7 (1) DOI: 10.1186/1745-6150-7-13

About these ads

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s